Applications
Generation Methodologies for Lattice Boltzmann and Multigrid

Fusion of Massively-Parallel Simulation Frameworks and Code
Software Coupling

- **ExaStencils** [1]: Cutting-edge whole program generation
 - **Domain**: Multi-solver frameworks on block-structured grids
 - **Code**: Scala framework generating C++ with CUDA, OMP, MPI
 - **Tools**: Multi-layered DSL called ExaSlang
- **waLBera** [2]: Classical C++ multiphysics framework
 - **Domain**: Lattice Boltzmann on octrees
 - **Code**: Modular C+++17 framework
 - **Tools**: Kernel code generation via lbmpy [3]
 - **In-house rigid particle dynamics module MESA-PD** [4]

- **Research Goals**
 - Develop a combined toolchain for both frameworks
 - Automated combination of code generation and frameworks
 - Automated mapping between different data structures

Fusion of Massively-Parallel Simulation Frameworks and Code
Software Design

ExaStencils

- **ExaSlang 2** (Discrete Model)
- **ExaSlang 3** (Solver Algorithm)
- **ExaSlang 4** (Whole Program)

Domain Knowledge
Target Knowledge
ExaStencils Compiler

- Optional but recommended

LB Method Definition
LB Update Rule
BCs
PDF Setter
Pack Info
LBM Kernel
Imply & pystencils
LBM Model.py
Target Kernels

Main

- interface

Target Code
Interface class

Fusion of Massively-Parallel Simulation Frameworks and Code
Motivation

Application (NS – LBM Coupling)

- **Domain**: Fluid flow simulations via NS and LBM solvers
 - Well established techniques with different traits
 - Only little research is done on their coupling
- **Code**: Combined toolchain
 - Temporal coupling can be used for
 - Mutual validation
 - Performance comparison
 - Use results of the other method as starting solution

- **Research goals**
 - Coupling of the different numerical methods
 - Automated mapping of different discretizations

Fusion of Massively-Parallel Simulation Frameworks and Code
Program Flow

- **Layer 2 & 3 used for conciseness.**
- Specification only on Layer 4 is also possible.

Fusion of Massively-Parallel Simulation Frameworks and Code
Results

- Weak scaling on SuperMUC-NG

- **Main**

 - **Method**
 - Interface

 - **Target Code**
 - Interface class

 - **Main**

 - **Target Code**

Fusion of Massively-Parallel Simulation Frameworks and Code
Future scope

- Use coupling for charged-particle application [5]
 - Fluid simulated with LBM in waLBera
 - Particle interaction handled with MESA-PD
 - Electric potentials computed via MG FVM solver generated with ExaStencils
- Spatial LBM and NS solver coupling

Fusion of Massively-Parallel Simulation Frameworks and Code
References

https://www.cs10.tf.fau.de/