The Challenges of Modern Epidemiology: from Classical Field Studies to Complex Models

Olivia Keiser (University of Geneva, Switzerland)

Wednesday, June 29, 2022
Montreal Room

John Snow’s investigations on cholera outbreaks in London in 1854 are often considered to be the origin of epidemiology. By depicting cases on a map, he detected the cause of the disease. In recent times, the methods used in epidemiological research have become increasingly complex and include various inputs, including data on genetic sequences, the environment, and human behavior. This information can be processed in real time and support immediate decision making. In parallel, the amount of published literature is increasing exponentially and open science allows everyone to access and reproduce analyses. However, the COVID-19 pandemic highlighted substantial shortcomings in epidemiologic surveillance. Without capacity building, complex models with unreliable or incorrect inputs produce inaccurate results, resulting in serious policy making implications. Using HIV and COVID-19 as case studies, I will introduce and discuss the benefits and challenges of modern epidemiological methods.

Olivia Keiser

Olivia Keiser is an SNF professor in epidemiology at the Institute of Global Health (IGH), at the University of Geneva. She studied biology in Basel, and then moved to Lausanne where she worked for the Swiss HIV Cohort Study. In 2006, Olivia joined the University of Bern, where her PhD work focused on analysing HIV infected patients in Africa. After receiving an SNF Professorship in 2017, Olivia moved with her group to Geneva. Her research group takes an interdisciplinary approach that combines mathematical modelling (including cost-effectiveness analyses), analyses of cohort data, data- and text mining, systematic reviews, and qualitative research techniques. The current focus is on HIV and COVID-19.

Imaging Black Holes with an Earth-Sized Telescope

Sheperd Doeleman (Harvard University, US)

This event is free of charge and open to the general public. The lecture is given in English.

Tuesday, June 28, 2022
19:00-19:50 CEST
Montreal Room

Black holes are cosmic objects so small and dense, that nothing, not even light can escape their gravitational pull.  Until recently, no one had ever seen what a black hole actually looked like.  Einstein's theories predict that a distant observer should see a ring of light encircling the black hole, which forms when radiation emitted by infalling hot gas is lensed by the extreme gravity near the event horizon.  On April 10th, 2019, the EHT project reported success: using a global network of radio dishes we have imaged a black hole, and we have seen the predicted strong gravitational lensing that confirms the theory of General Relativity at the boundary of a black hole.  This talk will cover how this was accomplished, details of the first results, groundbreaking new results, as well as future directions that will enable real-time black hole movies.

Shep Doeleman

Shep Doeleman is Founding Director of the Event Horizon Telescope (EHT) project and led the international team that made the first image of a black hole.  He received his bachelor's from Reed College and PhD in astrophysics from MIT.  After serving as assistant director of MIT’s Haystack Observatory and receiving a Guggenheim Fellowship in 2012, he moved to the Harvard-Smithsonian Center for Astrophysics, where he co-founded Harvard’s Black Hole Initiative.  He is the recipient of the Lancelot M. Berkeley Prize and the Bruno Rossi Prize from the American Astronomical Society, and now leads the next-generation EHT project with a goal to make movies of black holes.

From High-Resolution to Global Storm Resolving Models: Achievements and Perspectives

Pier Luigi Vidale (University of Reading, UK)

Monday, June 27, 2022
Montreal Room

The increase in availability of high-performance computing has enabled global coupled models to resolve some of the fundamental processes governing the climate system. More explicit representation of eddies in the ocean and of weather systems in the atmosphere impacts the general circulation and reduces inter-model disagreement.

More realistic simulation of the global hydrological cycle at resolutions below 50 km underpins more trustworthy projections of the availability of heat, carbon and water to land vs ocean ecosystems. Global “weather-resolving” models produce reliable global teleconnections that govern regional changes in weather and climate, including extremes (e.g. tropical cyclones). Resolving the ocean mesoscale produces “out-of-trajectory” future climates for Europe.

Global storm-resolving models now operate in the resolution range of 1-10 km, removing some long-standing errors in the simulation of precipitation (location, organization, diurnal cycle, intensity/frequency). However, uncertainties remain with respect to the adequacy of key parameterisations at such scales, motivating research on global cloud-resolving capability.

Pier Luigi Vidale

Pier Luigi Vidale is Professor of Climate System Science at the University of Reading (UoR), Director of the UoR–ECMWF research collaboration, and leads the National Centre for Atmospheric Science global High Resolution Climate Modelling programme. Pier Luigi has led large research projects in the UK and internationally, including the UK-Japan Climate Collaboration (2004-2007), and was Scientific Coordinator of the EU’s H2020 project “PRIMAVERA.” As investigator in the EU’s H2020 NextGEMS, he is currently responsible for identification and analysis of Tropical Cyclones (TCs) simulated by the new generation of global storm-resolving models (~3 km resolution). In terms of future directions, Pier Luigi is a member of World Climate Research Programme’s Digital Earth’s Lighthouse Activity, defining the nature and purpose of Digital Twins for climate.